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Summary  

The creeping motion along their line of centers of two fluid spheres in contact is 
analyzed. An exact solution is presented. Corrections to the Hadamard--Rybczynski 
equation are tabulated for various particle radii ratios and particle fluid to external fluid 
viscosity ratios. In the limit of infinite particle viscosity, these corrections are shown to 
agree with previous calculations for rigid spheres. 

Introduction 

The fluid mot ions  produced by the migration of  a bubble or drople t  
through a quiescent viscous fluid have been the subject of  numerous  investi- 
gations. The creeping flow translation of a single fluid sphere was analyzed 
by Hadamard [1] and independent ly  by Rybczynski  [2].  Assuming contin- 
uous tangential velocity and cont inuous tangential shearing stress across the 
interface of  the phases, they  found that  the force exerted on the sphere by 
the cont inuous fluid phase is 

3 a + 2  
F z = -6rrp e a s U 30 + 3 (1.1) 

In practice, the observed drag on a bubble is of ten  much closer to the Stokes 
drag on a rigid sphere. Additionally,  the internal circulation of  these bubbles 
is no t  as strong as predicted by the Hadamard--Rybczynski  model.  The 
explanation is tha t  the cont inuous liquid phase normally contains surface- 
active substances (surfactants) which are t ransported to the bubble surface 
and accumulated there.  Because of  the tangential surface velocity associated 
with internal circulation, these surfactants are carried to the rear of  the bubble. 
The concentra t ion of  surfactants is consequent ly  greater at the rear than at 
the bubble f ront  where new surface is cont inuously being formed.  Because of  
this higher concentra t ion of  surfactants at the rear, the surface tension is 
lower there.  A net  force on the surface due to the surface tension gradient 
results. This force opposes the surface mot ion  causing the bubble to  move 
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with reduced internal circulation, more nearly like a rigid sphere. The earlier 
work on the effect of  surfactants is described by Levich [3]. These earlier 
models, however, do not describe the cap of rigid surface observed at the rear 
of  the bubble by Savic [4]. These observations reveal that the fluid motion 
is not  simply a slower mot ion with fore and aft symmetry.  Instead, the 
circulation and surrounding flow is asymmetric.  The rear of the bubble is a 
rigid spherical cap resulting from the surface convection of relatively insoluble 
surfactant. The remainder of  the bubble  surface has negligibly small tangential 
stress because of  the low concentrat ion of  surfactant and the negligible internal 
viscosity. 

Davis and Acrivos [5] have analyzed the motion of  bubbles with stagnant 
caps. Their analysis, based on the observations of Savic, yields a bubble drag 
dependence in agreement with the experimental results of  Bond and Newton 
[6]. These results demonstrate  that for sufficiently large bubbles, the drag is 
given by the Hadamard--Rybczynski  law rather than Stokes law. They 
further demonstrate  that under these conditions, the cap angle is small. 

The purpose of this paper is to extend the Hadamard--Rybczynski  law to 
describe the motion of  a pair of  contacting fluid spheres moving along their 
line of  centers. The results of  this analysis are subject to the same restrictions 
implicit in the use of  the Hadamard--Rybczynski  law. Additionally, one must 
impose restrictions necessary to ensure that the film separating the spheres 
does not  immediately fail resulting in their coalescence. The motion of fluid 
spheres in apparent contact  has been frequently observed with drops, e.g., 
by Bartok and Mason [7] and Mackay and Mason [8] and bubbles, e.g., by 
Pattle [9] and Soo [10].  The rate of  film thinning between the fluid spheres 
depends on several factors. The presence of  surfactant on a bubble surface 
retards the film thinning between bubbles and hinders coalescence. Because 
surfactant on the surface of  the leading bubble  is swept back toward the 
apparent contact  region, a region of relatively stagnant fluid, trace amounts  of  
surfactant may delay coalescence wi thout  significantly affecting the drag. 

The hydrodynamic  interaction of  a fluid sphere with a second fluid sphere 
or with a plane interface has been the subject of previous investigations. Bart 
[11] examined the motion of  a fluid sphere, immersed in a second fluid, 
moving normal to a plane interface bounding yet  another fluid. Wacholder 
and Weihs [12] analyzed the motion of a fluid sphere through another fluid 
normal to a rigid or free plane surface. Wacholder and Weihs' calculations 
agree with the results obtained by Bart in these limits. Wacholder and Weihs 
also treated the case of  two equal-sized and separated spheres moving with 
equal velocities along their line of centers. This final case is an extension of 
the analysis of  Stimson and Jeffery [13],  who analyzed the fluid mot ion 
generated by two rigid spheres moving parallel to their line of centers with 
equal velocities. A bispherical coordinate system was used in each of these 
analyses and exact solutions of  the creeping flow equations obtained. The 
continuous tangential velocity and continuous tangential stress boundary  
conditions were employed at each interface between fluid phases. 
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While the solutions obtained using the bispherical coordinate system are 
exact and valid for any small separation, these solutions are not suitable for 
examining the motion of two spheres when the separation vanishes. The 
number of terms in the series solution that must be retained continues to grow 
without bound as the separation between the spheres decreases. The motion 
of a doublet of equal rigid spheres translating along its axis was first treated 
by Faxen [14], who examined the limit of the Stimson and Jeffery force 
expression as the separation between the spheres vanished. Recently, this 
motion has been reexamined and extended by Cooley and O’Neill [15] and 
independently by Goren [16]. These recent works utilize the tangent sphere 
coordinate system to simplify writing the boundary conditions at the sphere 
surfaces. The analyses yielded exact solutions of the creeping flow equations. 
Results were obtained for the drag on doublets of unequal rigid spheres as 
well as the case treated by Faxen. Yet another method of treating slow 
viscous flow past axisymmetric assemblages of rigid particles is presented by 
Gluckman et al. [ 171. Their multipole truncation technique is a rapidly 
converging scheme suitable even for small spacings or touching bodies. 

We intend here to extend the analysis of Wacholder and Weihs to include 
the motion of two fluid spheres in apparent contact translating along their 
line of centers. By using a tangent sphere coordinate system, results are 
readily obtained for pairs of arbitrary sized spheres. 

Analysis of the fluid motion 

Consider the motion of two touching fluid spheres translating along their 
line of centers. The motion of each of the fluids is governed by the creeping 

Fig. 1. Tangent sphere coordinates. 
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flow equations subject to conditions imposed at the boundaries. The shape 
of the boundary between fluid phases suggests the use of  the tangent sphere 
coordinate system. This coordinate system is shown in Fig. 1. The tangent 
sphere coordinate system (7, ~, ~) is a rotational orthogonal curvilinear 
coordinate system related to cylindrical coordinates (z, p, ~) by 

~ 7 
z = ~2+72 ; P = ~2+~2 ; ~ = ¢ (2.1) 

The scale factors or metric coefficients are 

1 (2.2) h~ = h~ ~ 2 + ~ 2 ;  he = p = ~27 
= + 7  ~ 

In this coordinate system, a sphere of  radius 12~1-1 with its center located on 
the axis at z = (2~)-1 is the constant  ~ coordinate surface. The constant  v 
coordinate surfaces are tori with circular cross-sections of  radius (27)-1 
centered at z = 0 and p = (2r~)-I. Tangent sphere coordinates are described in 
great detail by Moon and Spencer [18].  

The governing equation for axisymmetric creeping f low is 

E 4 ff = 0 (2.3) 

where ¢ is the Stokes stream funct ion and the Stokes stream function 
operator,  E 2, is given by 

in tangent sphere coordinates. 
A reference frame is fixed to the spheres so that there is no relative 

normal fluid velocity at either surface. In terms of the Stokes stream function, 
this boundary  condition becomes 

~e = 0 at ~ = $I (2.5) 

and 

~ e  = 0 at ~ = - ~ I I  (2.6) 

for the continuous phase, and 

~ = 0 at ~ = ~I (2.7) 

and 

ffi~i = 0 at ~ = - ~ I I  (2.8) 

for the fluids internal to the spheres. The subscripts I and II refer to the 
spheres defined by the ~I and -~II coordinate surfaces. 

The remaining boundary  conditions imposed at the fluid interfaces are the 
Hadamard--Rybczynski  conditions of continuous tangential velocity and 
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continuous tangential stress across the interfaces. These conditions provide 
the coupling between the inner and outer  f low fields. The cont inuous 
tangential velocity condit ion is writ ten in terms of the stream funct ion as 

o w e -  0W} at ~ = ~I (2.9) 
o~ o~ 

and 

OW e 
- 0WII at ~ = - ~ I I  ( 2 . 1 0 )  

0~ 0~ 

in the frame of the spheres. The continuous tangential stress condit ion is 

l]e = l-I i at ~ = ~I (2.11) 

and 

[I e = II i at ~ = - ~ I I  (2.12) 

Far f rom the fluid spheres, the flow is uniform streaming in the negative 
z-direction. The stream function of  the exterior fluid accordingly has the limit 

Up 2 Urt: 
¢ - ,  - -  - ( 2 . 1 3 )  

2 2(~2 + ~2) ~ 

as the distance from the double t  increases wi thout  bound.  This limit corre- 
sponds to ~ -~ 0, ~ ~ 0. 

A solution of  (2.3) satisfying (2.5) through (2.13) is sought. Like Laplace's 
equation, the equation 

E 2 W = 0 (2.14) 

is R-separable in tangent sphere coordinates. Additionally, solutions to the 
governing equation (2.3) are readily found from solutions of  (2.14). If we let 

W = (~2 + 72)-1/2 G(~,~) (2.15) 

and substi tute into (2.14), the resulting equation for G separates into ordinary 
differential equations in ~ and 77. 

G = N(~) M(~) (2.16) 

d2N k 2 N = 0 (2.17) 
d~ 2 

r/2 d2M dM X2 r/2 -~--d~ + m = 0 (2.18) 

The solution of  the linear differential equation with constant  coefficients 
(2.17) is 

N = ct sinh ~ + c2 cosh k~ (2.19) 

577 



while the solution of {2.18), a form of Bessel's equation, is 

M = v[c3 J,  (?~v) + c4 Y, ( ~ ) ]  (2.20) 

J, (?,V) and Y, ( ~ )  are Bessel's functions of the first and second kind and 
order unity. Since Y, (~v) is unbounded at ~ = 0, this solution is omit ted and 
the solution of  {2.14) is 

o o  

(~2 + v~) -1/2 f = V J~ (~V)[c~ (X) sinh ~ + c2 (?~) cosh ?,~] d~ (2.21) 

o 
Majumdar [19] obtained the solution of (2.14) in his analysis of  the axi- 
symmetric irrotational flow past two touching spheres. 

Any solution of (2.14) is a solution of (2.3). Stimson and Jeffery have 
shown that if a function @ satisfies (2.14), then z~b also satisfies (2.3). Any 
linear combination of  these solutions of  (2.3) is also a solution. Accordingly, 
(2.21) can be used to generate a sufficiently general solution of  the  creeping 
flow equation for our purposes. 

For the external fluid, the solution is, using (2.13), writ ten 

Uv2 (2.22) ~ e  = U~7(}2 + 772) - 3 / 2  f Fe(~) j ,  (X~) dX + 2(}2 + V2)~ 

0 

where 

Fe(~) = (A + C~) sinh ?,~ + (B +D~) cosh k~ (2.23) 

and A, B, C, D are functions of ~. Bounded solutions in the interiors of  the 
fluid spheres are 

o O  

U,7(~ 2 +,72) -3/2 f F i Jl ( ~ )  d~ (2.24) I , I I  
o 

~ , I I  

with 
i = 

F I 

and 

(a + b~) e -x~ (2.25) 

F i -- ( c + d ~ ) e  x~ (2.26) 
II 

a, b, c, and d are also functions of  ~. The eight coefficients are found by 
simultaneously satisfying the eight boundary conditions (2.5 through 2.12) 
imposed at the fluid sphere surfaces. The following relations, obtained using 
tabulated Hankel transforms [20],  are useful in writing the boundary  
conditions 

G O  

'0(~ 2 + 'F/2) - 1 / 2  = f e -~'L~I (1~1 + ~-1 )dl (~?) d~ (2.27) 

0 
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d-~ r/(~2 + ~/2) = - ~  f ~ e -hIl l  J,  (},r/) d}, (2.28) 

0 

d 2d±[ ~(~2+r/2) = -  f X(1-},l~l)e-Xl~lJ,(XrT)dh (2.29) 

0 

Now, the no normal flow boundary  conditions for the external fluid (2.5 
and 2.6) become 

A sinh ;~I + B cosh h~ I + C~ I sinh h~ I + D~ I cosh h~ I 

= -e-X~I (~I + X-~)/2 (2.30) 

at the surface of  sphere I and 

-A  sinh }'~II + B cosh }'~II + C~II sinh ;~II - D~II cosh h~i I 

= -e-X~II (}II + h - ~ ) / 2  (2 .31)  

at the surface of  sphere II. Similarly, for the interior fluid, the conditions 
(2.7 and 2.8) become 

a + ~ i b  = 0 (2.32) 

and 

c -  ~II d = 0 (2.33) 

The tangential velocity boundary  conditions (2.9 and 2.10) become 

-ha  e -x~I + b e -x~I (1 -  h~i ) - Ah cosh h~ i -  BX sinh h~i 

-C(h~ I cosh h~ I + sinh h~i) - D(k~ I sinh h~i + cosh h~I ) 

= - ~ I  e-h~I/2 (2.34) 

and 

kc e -x~II + d e -x~II (1 -  ~ I I )  - A~, cosh }'~II + B}, sinh k~ii 

+C(~,~II cosh X~I I + sinh )'~II) - D(~'~II sinh }'~II + cosh ~ I I )  

= h~II e - ~ I I / 2  (2.35) 

The tangential stress component  I I ~  is writ ten in terms of the stream 
funct ion in tangent sphere coordinates as 

(2.36) 
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which, using (2.5) through (2.8), reduces to  

~2 a2 I ( ~2)3/2 ~ 1 11~ = -uv -~ (~2 + v2, ~2 + (2.37) 

at the surfaces of the  fluid spheres. The tangential stress boundary  condit ions 
(2.11 and 2.12) become 

02 [(~2+~2)3/2 i ii1 = 02 r/2)3/2 
°I, II 0~2 ffI, ~ 2 [  (~2+ , e l  (2.38) 

at the two surfaces, e refers to the viscosity ratio. 

i e (2.39) aI,II = PI,II/p 

In terms of  the coefficients in the stream funct ion  expression, the cont inuous  
tangential stress boundary  condi t ions are 

[ h a e  - x ~ I - b e  -x~l ( 2 - h ~ i ) ]  - A X s i n h X ~ i - B X c o s h  O I X~i 

- C(2 cosh )'~I + X~I sinh X~I) - D(2 sinh X~ I + X~ I cosh X~I) 

= (X~I-1)  e-~'~I/2 (2.40) 

and 

Oli [Xc e-~'~II + d e-~'~II ( 2 -  X~II) 1 + AX sinh X~II 

- BX cosh X~II- C(2 cosh X~I I + X~I I sinh ~'~II) 

+D(2  sinh X~I I + X~i I cosh X~II) = (X~II-1)  e-X~n/2 (2.41) 

Simultaneous solut ion of the eight equations,  (2.30) through (2.35), (2.40) 
and (2.41) yields values of the eight coefficients in terms of X, the sphere 
radius ratio and the viscosity ratios. 

Forces on the spheres 

Cooley and O'Neill as well as Goren used an expression due to St imson and 
Jeffery to find the forces exerted by the surrounding fluid on the two rigid 
spheres. In a steady axisymmetric  creeping flow, the  force exerted on a body 
by the  fluid is the axial force 

F z = rrp f h~ au~ ~ p2 ] h2 du2 (3.1) 
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While S t imson  and J e f f e r y  appl ied a no-slip cond i t i on  at the  b o d y  surface  to  
ob ta in  this result ,  it has been  n o t e d  [21,  22]  t h a t  the  no-slip cond i t i on  m ay  
be removed .  The  resul t  is equal ly  valid fo r  f low past f luid spheres where  the  
tangent ia l  ve loc i ty  of  the  f luids does  no t  vanish at  t he  in terface .  Accordingly ,  
t he  t angen t  sphere  fo rmula t ions  of  this express ion  o f  Cooley  and O'Neil l  and 
o f  Gore n  are equal ly  appl icable  here .  In t e rms  o f  the  s t ream f u n c t i o n  
coeff ic ients ,  t he  forces  on  the  f luid spheres are 

O o  

F~,i i  = - 4 ~ p  e a i , i i  U / ~,(S+ A ) d k  (3.2) 

o 

where  the  uppe r  sign refers  t o  sphere  I and the  lower  sign refers  to  sphere  II. 
The  force  on  a sphere  is m o r e  useful ly  wr i t t en  in t e rms  of  the  fo rce  on  an 
isolated fluid sphere  (1.1) and  a co r rec t ion ,  ~, to  a c c o u n t  for  the  e f fec t  o f  
the  second  sphere 's  presence.  

3oi ,  II + 2 
F z = -6~'p e U 

I,II  aI , I I  
3 o i , i i  + 3 

OO 

2oi,  i i + 2  f ~ , ( B + A ) d ~ ,  
/3I'II - 3 o i , i i  + 2 o 

~I,II  (3.3) 

(3.4) 

The  factor , /3 ,  was calcula ted for  a f luid sphere,  say sphere  I, u n d e r  a var ie ty  
of  condi t ions .  F o r  selected values o f  the  radius ra t io ,  R - a i / a i i ,  and selected 
equal  viscosi ty  ratios,  o - oi  = o I I ,  equa t ions  (2.30)  t h ro u g h  (2 .35) ,  (2 .40) ,  
and (2 .41)  were  solved numer ica l ly  yielding the  coef f ic ien ts  as func t ions  of  h. 
The  integral  of  equa t i on  (3.4) was t h e n  evaluated numer ica l ly  using Legendre - -  
Gauss quad ra tu re  and the  resul t ing values of/3 p resen ted  in Table  1. 

TABLE 1 

Correction,/3, to drag on a fluid sphere resulting from adjacent sphere 

R a = 0.0 o = 0.5 a = 1.0 o = 5.0 o = 10.0 o = 100 a = 1000 o = 106 

0.10 0.14579 0.12535 0.11250 0.07619 0.06327 0.04170 0.03716 0.03637 
0.25 0.31023 0.27945 0.26049 0.20874 0.19101 0.16228 0.15641 0.15539 
0.50 0.49401 0.46516 0.44806 0.40447 0.39063 0.36948 0.36541 0.36471 
1.00 0.69315 0.67783 0.66971 0.65327 0.64956 0.64562 0.64519 0.64514 
2.00 0.85161 0.84965 0.84963 0.85448 0.85768 0.86435 0.86597 0.86627 
4.00 0.94236 0.94479 0.94687 0.95486 0.95829 0.96447 0.96584 0.96608 

10.00 0.98724 0.98861 0.98958 0.99268 0.99388 0.99596 0.99641 0.99648 

F o r  equal-sized spheres,  R = 1, and for  any  viscosi ty  ratio,/3 should  be 
slightly smaller t h a n  the  co r respond ing  fac to r  p resen ted  b y  Wacholder  and 
Weihs at  the  closest  separa t ion  calcula ted by  t h e m  (dis tance b e tw een  cen te rs /  
d i ame te r  = 1 .005) .  In all cases, ~ satisfies this check.  In the  l imit  of  inf ini te  
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viscosity ratio, the spheres are rigid. Our calculations for o = 1 0  6 agree with 
the rigid sphere results of  Goren and of Cooley and O'Neill, at each value of  
R. 

For equal-sized spheres with identical viscosity ratios, the coefficients of 
the stream functions have been determined algebraically. Choosing ~I = ~II = 1, 
the correction to the Hadamard--Rybczynski  law is 

e -~ {[o(2~ 2 + ~ + 1) + ~] sinh ;~ + (X +1)(0~ +1) cosh X} d~ 

/~ - 3o + 2 o(~ + cosh ~ sinh 2~) + cosh 2 

o + 1  

For infinite viscosity ratio, rigid spheres, this expression reduces to the result 
of  Faxen 

O0 

i f(x_ 
3 

0 

2 sinh: ~ - 2~: 

s i n h 2 ; ~ + - ~  ) dX 

while for a zero viscosity ratio, approximating bubble mot ion through a 
liquid, 

OO 

= 1_ f e - x [ ~ s i n h X + ( ~ + l )  cosh~]  d~ 
2 cosh 2 

0 

C o n c l u s i o n s  

The effect  of internal circulation on the hydrodynamic  interaction of  two 
touching fluid spheres migrating along their line of centers has been investi- 
gated. Exact solutions were obtained and the correction to the drag on a 
sphere was tabulated for several radius ratios and viscosity ratios. 

For equal-sized spheres, the effect  of greater internal circulation, corre- 
sponding to smaller dispersed phase viscosity, is to decrease the effect  on the 
drag caused by the adjacent sphere. This effect was also obtained by  
Wacholder and Weihs in the analysis of  separated fluid spheres. 

For spheres of  widely disparate sizes, the effect is more subtle. In the case 
of  the smaller sphere, smaller dispersed phase viscosity again serves to 
decrease the influence of the larger sphere on the drag. However, the smaller 
viscosity also increases the smaller sphere's influence on the larger sphere's 
drag. Each of these effects is readily explained in terms of  the stagnant fluid 
region fore and aft of the larger sphere. As the sphere viscosity increases, the 
extent  of  stagnation about  the smaller sphere increases producing these 
results. The same behavior can be anticipated in the interaction of separated 
fluid spheres of  significantly different size. 
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Nomencla ture  

A,B ,C,D 
a,b,c,d 

as,ai,aiI 
E 2 
F z 
h~,h~,hc),h~,h2 
R 
U 
Ul~U2 

Z 

stream funct ion coefficients defined by (2.23) 
stream funct ion coefficients defined by (2.25) and 
(2.26) 
sphere radii 
Stokes stream funct ion opera tor  
hydrodynamic  force on sphere 
metric coefficients 
radius ratio, ai/aii 
velocity of spheres 
or thogonal  curvilinear coordinates 
axial position in cylindrical coordinates 

Greek symbols 

77 

p 

II 

P 
O 

correct ion to  Hadamard--Rybczynski  law accounting 
for effect  of neighboring sphere 
tangent sphere coordinate  
separation variable 
viscosity 
tangent sphere coordinate  
stress componen t  
cylindrical radial position 
viscosity ratio defined by (2.39) 
Stokes stream funct ion  

Superscripts 
e external  fluid 
i internal fluid 

Subscripts 
I sphere I 
II sphere II 
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